初中圆知识点第1篇
5.1圆
1、定义:圆是到定点的距离等于定长的点的集合
2、点与圆的位置关系:
如果⊙O的半径为r,点P到圆心O的距离为d,那么
点P在圆内,则dr;
点P在圆上,则dr;
点P在圆外,则dr;反之亦成立。
5.2圆的对称性
一、圆是中心对称图形,圆心是它的对称中心。
定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
圆心角的度数与它所对的弧的度数相等。
二、圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
5.3圆周角
定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角
定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
定理:直径(或半圆)所对的圆周角是直角。90o的圆周角所对的弦是直径。
5.4确定圆的条件
结论:不在同一条直线上的三点确定一个圆
三角形的外接圆(三角形的外心):三角形的外心是三角形中3边垂直平分线的交点,三角形的外心到三角形各顶点的距离相等。
注:直角三角形的外心是斜边的中点,外接圆的半径等于斜边的一半。
5.5直线与圆的位置关系
一、三种位置关系:相交、相切、相离
如果⊙O的半径为r,圆心O到直线l的距离为d,那么
直线l与⊙O相交,则dr;
直线l与⊙O相切,则dr;
直线l与⊙O相离,则dr;反之亦成立。
二、圆的切线的性质及判定
定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
两种方法:连半径,证垂直;作垂直,证半径
定理:圆的切线垂直于过切点的半径
三角形的内切圆(三角形的内心):三角形的内心是三角形中3条角平分的交点,三角形的内心到三角形各边的距离相等。
注:求三角形的内切圆的半径通常用面积法,特殊地,直角三角形内切圆的半径=a?b?c(其中c为斜边)2
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
5.6圆与圆的位置关系
五种位置关系:外离、外切、相交、内切、内含
阅读材料:如果两个圆相切,那么切点一定在连心线上相交两圆的连心线垂直平分两圆的公共弦。
5.7正多边形与圆
各边相等、各角也相等的多边形叫做正多边形。
正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。
注:与正多边形有关的计算
初中圆知识点第2篇
圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:
①k不存在,验证是否成立
②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x——a)2+(y——b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0——a)(x——a)+(y0——b)(y——b)=r2
4、圆与圆的。位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
初中圆知识点第3篇
1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”
2、与圆有关的概念
(1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径)
(2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆)
(3)等圆(半径相等的两个圆叫做等圆)
3、点和圆的位置关系:
如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,则:
(1)d<r 圆内
(2)d=r 圆上
(3)d>r 圆外
4、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。
一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。
5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的。两条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)平分弧的直径,垂直平分弧所对的弦。
6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
7、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论:半圆(或直径)所对的圆周角是直角,90°圆周角所对的弦是直径。同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。
8、弧长及扇形的面积圆锥的侧面积和全面积
(1)弧长公式:lnr 180
nr21lr(2)扇形的面积公式:3602
(3)圆锥的侧面积公式:rl
(4)圆锥的表面积公式:rlr
9、圆与圆的位置关系
①两圆外离d﹥R+r
②两圆外切d=R+r
③两圆相交R-r﹤d﹤R+r(R﹥r)
④两圆内切d=R-r(R﹥r)
⑤两圆内含d﹤R-r(R﹥r)
初中圆知识点第4篇
圆的一般方程
圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y的降幂排列,得:
x+y——2ax——2by+a+b——R=0
设D=——2a,E=——2b,F=a+b——R;则方程变成:
x+y+Dx+Ey+F=0
任意一个圆的方程都可写成上述形式。把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:
(1)x2项和y2项的系数相等且不为0(在这里为1);
(2)没有xy的乘积项。
Ax+Bxy+Cy+Dx+Ey+F=0
圆的端点式:
若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x——a1)(x——a2)+(y——b1)(y——b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x+y=r上一点M(a0,b0)的切线方程为a0·x+b0·y=r
在圆(x+y=r)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0·x+b0·y=r。
圆的性质有哪些
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、圆的外部可以看作是圆心的距离大于半径的点的集合
4、同圆或等圆的半径相等。
圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。这个给定的点称为圆的圆心。作为定值的距离称为圆的半径。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。圆的直径有无数条;圆的对称轴有无数条。圆的直径是半径的2倍,圆的半径是直径的一半。
用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个角之间的距离。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
初中圆知识点第5篇
1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的。点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1经过圆心且垂直于切线的直线必经过切点
16.推论2经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-rr)
④两圆内切d=R-r(R>r)⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2p表示正n边形的周长
27.正三角形面积√3a/4a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长=d-(R-r)外公切线长=d-(R+r)
32.定理一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35.弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr