六年级数学下册教案第1篇
一、教学内容:
人教版六年级下册《比例尺》。
二、教学目标:
1、使学生理解比例尺的意义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、体验数学与生活的联系,培养用数学眼光观察生活的习惯。
三、教学重点:
理解比例尺的意义。
四、教学难点:
掌握求比例尺的方法,并能熟练解答比例尺的有关问题。
五、教法要素:
1、已有的知识和经验:
﹙1﹚比的意义
﹙2﹚化简比
2、原型:
﹙1﹚分别画出5厘米和10米长的线段。
﹙2﹚插图内容:中国地图、机器零件图。
﹙3﹚例1将线段比例尺改写成数值比例尺。
3、探究的问题:
﹙1﹚为什么要确定图上距离与实际距离的比?什么叫比例尺?
﹙2﹚线段比例尺怎样改写成数值比例尺?
﹙3﹚怎样求一幅图的比例尺?
六、教学过程:
(一)情境导入
1脑筋急转弯
北京到上海的距离是1200千米,可是一只蚂蚁从北京到上海只用5秒钟,这是为什么?
生:它是在地图上爬的
出示一幅中国地图引出图上距离和实际距离。
2、让学生画一条长5厘米的线段。﹙学生很快画完﹚
3、再画一条长10米的线段。﹙学生迟疑﹚
师:你有什么疑问吗?
生:本子没有那么长,画不出来。
师:那该怎么办呢?
小组讨论,然后在练习本上画一画
组织汇报交流,让学生说说自己画的线段是多少厘米,它是把10米长的线段进行怎样变化得到的。
师:由于你们的标准不一样,因此大家画的线段长度不一样,所以画图时应该有个统一的标准,这个标准就叫比例尺,今天我们就来研究比例尺的内容,板书:比例尺
二)探究与解决
1、探究比例尺的意义
(1)阅读课本53页上面的内容
(2)你认为什么叫比例尺?
让生说出自己画图的标准即比例尺,并分别说出1:100和1:200的意思。再用自己的语言叙述什么叫比例尺。
师:一幅图的图上距离与实际距离的比,叫做这幅图的比例尺。
板书:图上距离:实际距离=比例尺﹙或分数形式的比例尺﹚
2、认识数值比例尺和线段比例尺
师:有关比例尺的知识在生活中有很多的用处。
﹙1﹚出示:标有数值比例尺的中国地图
让生说出比例尺1:100000000的意思。﹙当学生回答出图上1厘米表示实际距离100000000厘米。师可引导学生说出也就是图上1厘米表示实际距离1000千米。﹚
﹙2﹚出示:机器零件图
说出图中的2:1表示什么意思。﹙图上2厘米表示实际距离1厘米,由于机器零件较小,需要把实际尺寸扩大。﹚
师:像1:100、1:100000000、2:1…这些比例尺有个特点,前项或后项都是1。为什么不是2或3或其他数呢?﹙生…﹚为了计算方便,一般都把前项或后项写成是1的比。像这样用数字比的方式表示的比例尺我们把它叫做数值比例尺。
﹙3﹚出示:标有线段比例尺的北京市地图
让生讨论线段比例尺表示的意思,并介绍线段比例尺。
过渡:那怎样将线段比例尺改写成数值比例尺呢?
3、线段比例尺改写成数值比例尺
学习例1:小组的同学互相讨论尝试改写。师板书例1。
师:谁能说说改写时要注意什么?
师生共同小结:
(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0
比例尺是一个比,不带单位名称
(3)比的前项为1。
过渡:通过刚才的学习,我们认识了什么叫比例尺,还知道了有数值比例尺和线段比例尺,那你知道怎么算比例尺吗?
4、完成53页“做一做”
学生试做后,小组内交流做法。
全班交流,总结方法。﹙首先依据比例尺的意义确定比例尺的前项和后项,写出比,图上距离与实际距离的位置不要写错;前后项单位名称要统一;最后化简比,变成前项是1的比。﹚
(三)训练与应用
1、我会判断
﹙1﹚比例尺是一种测量长度的尺子。﹙﹚
﹙2﹚一幅图的比例尺是80:1,表示把实际距离扩大80倍。﹙﹚
﹙3﹚比例尺的后项一定比前项大。﹙﹚
2、完成练习十第1、2题
学生完成后,让生说一说是怎样想的。
3、完成练习十第3题
学生完成后,让生说说自己的想法。并观察这个比例尺是将实际距离扩大。
(四)小结与提高
引导学生谈谈本节课的收获并对自己的学习表现进行评价。
六年级数学下册教案第2篇
教学目标:
知识目标
1、理解>、=和”是大于号,表示一数比另一数大;“
2、使用>、=和
能力目标
1、会写大于号、等于号和小于号。
2、能够读出一个式子。
情感目标
1、体会学习数学的乐趣。
2、养成一丝不苟,认真学习的习惯。
教学重点:
1、理解“>”、“
2、“>”、“
教学难点:
使用>、=和
教学媒体:
多媒体课件;小兔子和萝卜的图片。
教学过程:
一、复习铺垫(多媒体)
1、哪种图形多?在多的一行打√
○ ○ ○ ○ ○ ()
☆ ☆ ☆ ☆ ☆ ☆ ()
2、哪种图形少?在少的一行打√
▲ ▲ ▲ ▲ ▲ ▲ ()
■ ■ ■ ■ ()
3、把同样多的用线连起来
(设计意图:为学生学习新知从思路和方法上作好铺垫,也为学习新知作了衔接。)
二、探究与体验。
教师把课本第20页的主体图利用多媒体展示出来
1、师:今天是小熊猫的生日,他的一些好朋友都来祝贺了,小熊猫准备了一些丰盛的午餐来招待大家,在这幅图中,你能发现哪些与数有关的知识?
学生观察汇报
生:有3只熊猫,3只猴子,4只兔子。
生:小熊猫准备了4根香蕉,4个桃子,4个萝卜
2、教师随着学生的汇报,有选择地贴出准备好的各种图片。
4只小兔图片
3只小熊猫图片
3只小猴图片
3、教师引导:同学们发现了这么多数学方面的信息,如果让你帮小熊猫分食物,你准备怎样分?同桌互相交流。
学生根据自己的理解来分,如:把萝卜分给小兔,把桃子分给小猴,把竹子分给小熊猫自己
(1)引导学生观察思考:小兔子有几只?萝卜有几个呢?
学生:4只小兔子,4个萝卜。
学生:兔子和萝卜同样多。
(2)提问:每只小兔能吃上一个萝卜,萝卜一个也没多,小兔的只数与萝卜的个数有什么关系?(相同、相等、同样多)
学生回答后,告诉学生,同样多可以用符号“=”表示,并在黑板上写上“4=4”,认识“=”,以及读法,进而教读这个式子。
(3)指导学生书写等号。
(4)师:根据刚才发现的数学信息,还有哪些可以用“=”连接起来。
引导学生得出
萝卜的个数和桃子的个数可以写成“4=4”;
小熊猫的只数和小猴的只数可以写成“3=3”;
根据生活中的信息,举出用“=”表示的实例。
4、师:我们知道了同样多可以用“=”连接起来,如果不是同样多的又怎样呢?
分桃子
提问:观察主体图,数一数几只猴,几个桃?学生回答后,进一步提问:桃子和猴子的数目同样多吗?
(1)引导学生比较,用语言表达:桃比猴子多;猴子比桃少。
①告诉学生“4比3大”可以用符号“>”表示。学生说一说大于号的形状。可用语言表示,也可用手势表示。
②在讲“〈”号时,让学生说一说小于号“
(2)板书:4 〉3与3〈4,认识“〉”、“〈”及其读法。
5、观察区分“>”、“
师:观察大于和小于两个符号,你发现了什么相同点和不同点?
生:都是躺倒的“∨”,只是方向相反,但都是开口对着大数。
(1)交流认识,记忆“>”、“
(2)以游戏方式,熟悉、记忆这3种关系符号。
看谁摆得好:教师说符号名称,学生用小棒摆出相应的符号。
(设计意图:在情境中,通过观察,让学生体验比多少的一些方法,加深学生对同样多、多、少的概念的认识,同时引导学生经历把生活语言转化成数学语言,再抽象出用数学符号表示的过程。)
三、练一练
1、基本练习:完成21页“练一练”第1题。
2、巩固练习:完成21页“练一练”第2题。
四、小结
1、让小朋友说说这节课学到了什么。
2、教师加以概括:比较两个数的大小时,可以用关系符号“>”、“
五、作业
完成21页“练一练”第3题。
板书设计:
认识>=
4 = 4读作:4等于4 (等号)
4 >3读作:4大于3 (大于号)
六年级数学下册教案第3篇
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。
(二)核心能力
在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。
(三)学习目标
1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。
(四)学习重点
引导学生把具体问题转化为“抽屉原理”。
(五)学习难点
找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1、情境导入
师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。
师:神奇吧!你们想不想表演一个呢?
师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?
在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)
2、探究新知
(1)学习例3
①猜想
出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
预设:2个、3个、5个…
②验证
师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。
可以用表格进行整理,课件出示空白表格:
学生独立思考填表,小组交流。
全班汇报。
汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。
课件汇总,思考:从这里你能发现什么?
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。
③小结
师:为什么球的个数一定要比抽屉数多?而且是多1呢?
预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。
师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。
板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。
(2)引导学生把具体问题转化成“抽屉原理”。
师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?
思考:
①摸球问题与“抽屉原理”有怎样的联系?
②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?
学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。
从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。
结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。
3、巩固练习
(1)完成教材第70页“做一做”第1题。
(2)完成教材第70页“做一做”第2题。
4、课堂总结
师:这节课你学到了什么知识?谈谈你的收获和体验。
(三)课时作业
1、有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?
答案:5只。
解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】
2、一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?
答案:16条。
解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】
六年级数学下册教案第4篇
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
PPT课件圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积=底面积高
圆柱的体积=底面积高
用字母表示计算公式V=sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
六年级数学下册教案第5篇
教材分析
这一册教材包括下面一些内容:负数、百分数(二)、圆柱与圆锥、比例、数学广角、整理和复习等。
在数与代数方面,这一册教材安排了负数、百分数(二)和比例三个单元。结合生活实例使学生初步认识负数,了解负数在实际生活中的应用。百分数在实际生活中应用广泛,学会解决有关百分数的简单实际问题是加强问题解决教学的重要方面之一。比例的教学,使学生理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。
在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的。基础上,使学生通过对圆柱、圆锥特征和有关知识的探索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计算的基本方法,促进空间观念的进一步发展。
在用数学解决问题方面,教材一方面结合百分数(二)、圆柱与圆锥、比例等知识的学习,教学用所学的知识解决生活中的简单问题;培养学生发现问题、解决问题、分析问题和解决问题的能力。
在数学思想方法方面,教材除了结合负数、百分数(二)、圆柱与圆锥、比例、整理和复习等知识,让学生体会、理解和掌握归纳法、类比法、符号思想、分类思想、演绎推理思想、转化思想、数形结合思想、函数思想等思想方法外,还安排了“数学广角”的教学内容,引导学生通过观察、实验、推理等活动,理解和掌握模型思想、归纳法、演绎推理思想,体会运用数学思想、数学思想方法解决问题的有效性、优越性,发展学生的四能。
整理和复习单元是在完成小学数学的全部教学内容之后,引导学生对所学内容进行一次系统的、全面的回顾与整理,这是小学数学教学的一个重要环节。通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完善头脑中的数学认知结构,为初中的数学学习打下良好的基础;同时进一步提高学生综合运用所学知识分析问题和解决问题的能力。
学情分析
大部分学生能掌握本册应掌握的基本知识,学习较主动,但有个别学生依赖性较强,思维能力和分析能力都较差,听课时较易分神,学习成绩较不理想。应用类,如应用题,还有个别学生对题目难以理解,解题困难。学生学习习惯大多较好,课堂听课认真,作业基本上都能按时完成。只有少数潜能生学习上仍有惰性,完成作业处于应付状态。本学期尽量多设计分层次作业,让潜能生得到提高,优生得到发展。
学习目标
1、熟练地掌握百分数应用题的数量关系,并能解决问题。
2、通过归纳整理,是学生熟练地掌握解决百分数问题的方法。
3、培养学生良好的学习习惯。
教学重点和难点
认真审题,用百分数解决实际问题。
用百分数解决实际问题。
教学过程
一、复习整理
前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。
学生交流,汇报,教师随机板书,绘制表格。
二、综合运用
课件出示例5。
1、学生读题,明确已知条件及问题,尝试说说自己的解题思路。
2、利用提问,引导学生思考回答,归纳出解题思路。
提问启发:“满100元减50元”是什么意思?
引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。
归纳整理解题思路:
(1)在A商场买,直接用总价乘以50%就能算出实际花费。
(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。
3、学生独立列出算式,并计算出结果。再交流汇报,教师板书:
A商场:230×50%=115(元)
B商场:230-2×50
=230-100
=130(元)
115<130,
答:在A商场买应付115元,在B商场,买应付130元;选择A商场更省钱。
4、总结思考:在什么时候这两个商场价格差不多呢?
三、巩固练习
1、完成教材第12页“做一做”。学生独立完成,教师讲解。
2、完成练习二第12题,再集体交流订正。
3、完成练习二第13题。“折上折”是什么意思?怎么计算呢?
4、完成练习二第14题。
5、完成练习二第15题。提示:增长为“-0.068%”表示什么意思?
四、课堂小结
通过这节课,你有什么收获,你将如何运用到生活中呢?
板书设计
百分数:整理与复习