高二数学教案精选5篇
当前位置:贝知网>范文>教育范文>高二数学教案精选5篇
高二数学教案精选5篇
时间:2023-03-20 教育范文

高二数学教案精选5篇

高二数学教案第1篇

教学目标

1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

教学建议

教材分析

1.知识结构

2.重点难点分析

重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

(2)根据椭圆的定义求标准方程,应注意下面几点:

①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

(3)两种标准方程的椭圆异同点

中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

椭圆的焦点在轴上标准方程中项的分母较大;

椭圆的焦点在轴上标准方程中项的分母较大.

另外,形如中,只要,,同号,就是椭圆方程,它可以化为.

(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

教法建议

(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

(2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

(3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

(4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

(5)注意椭圆的定义与椭圆的标准方程的联系

在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

(6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

(7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

(8)在学习新知识的基础上要巩固旧知识

椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

(9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

高二数学教案第2篇

一、课前准备:

【自主梳理】

1、对数:

(1)一般地,如果,那么实数叫做________________,记为________,其中叫做对数的_______,叫做________.

(2)以10为底的对数记为________,以为底的对数记为_______.

(3),。

2、对数的运算性质:

(1)如果,那么,

(2)对数的换底公式:。

3、对数函数:

一般地,我们把函数____________叫做对数函数,其中是自变量,函数的定义域是______.

4、对数函数的图像与性质:

a1 0

图象性

质定义域:___________

值域:_____________

过点(1,0),即当x=1时,y=0

x(0,1)时_________

x(1,+)时________ x(0,1)时_________

x(1,+)时________

在___________上是增函数在__________上是减函数

【自我检测】

1、的定义域为_________.

2、化简:。

3、不等式的解集为________________.

4、利用对数的换底公式计算:。

5、函数的奇偶性是____________.

6、对于任意的,若函数,则与的大小关系是___________________________.

二、课堂活动:

【例1】填空题:

(1)。

(2)比较与的大小为___________.

(3)如果函数,那么的最大值是_____________.

(4)函数的奇偶性是___________.

【例2】求函数的定义域和值域。

【例3】已知函数满足。

(1)求的解析式;

(2)判断的奇偶性;

(3)解不等式。

课堂小结

三、课后作业

1、 。略

2、函数的定义域为_______________.

3、函数的值域是_____________.

4、若,则的取值范围是_____________.

5、设则的大小关系是_____________.

6、设函数,若,则的取值范围为_________________.

7、当时,不等式恒成立,则的取值范围为______________.

8、函数在区间上的值域为,则的最小值为____________.

9、已知。

(1)求的定义域;

(2)判断的奇偶性并予以证明;

(3)求使的的取值范围。

10、对于函数,回答下列问题:

(1)若的定义域为,求实数的取值范围;

(2)若的值域为,求实数的取值范围;

(3)若函数在内有意义,求实数的取值范围。

四、纠错分析

错题卡题号错题原因分析

高二数学教案:对数与对数函数

一、课前准备:

【自主梳理】

1、对数

(1)以为底的的对数,,底数,真数。

(2),。

(3)0,1.

2、对数的运算性质

(1),,。

(2)。

3、对数函数

,。

4、对数函数的图像与性质

a1 0

图象性质定义域:(0,+)

值域:R

过点(1,0),即当x=1时,y=0

x(0,1)时y0

x(1,+)时y0 x(0,1)时y0

x(1,+)时y0

在(0,+)上是增函数在(0,+)上是减函数

【自我检测】

1、 2. 3.

4、 5.奇函数6. 。

二、课堂活动:

【例1】填空题:

(1)3.

(2)。

(3)0.

(4)奇函数。

【例2】解:由得。所以函数的定义域是(0,1)。

因为,所以,当时,,函数的值域为;当时,,函数的值域为。

【例3】解:(1),所以。

(2)定义域(—3,3)关于原点对称,所以

,所以为奇函数。

(3),所以当时,解得

当时,解得。

高二数学教案第3篇

(1)平面向量基本定理的内容是什么?

(2)如何定义平面向量基底?

(3)两向量夹角的定义是什么?如何定义向量的垂直?

[新知初探]

1、平面向量基本定理

条件e1,e2是同一平面内的两个不共线向量

结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2

基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底

[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是的;③基底不,只要是同一平面内的两个不共线向量都可作为基底。

2、向量的夹角

条件两个非零向量a和b

产生过程

作向量=a,=b,则∠AOB叫做向量a与b的夹角

范围0°≤θ≤180°

特殊情况θ=0°a与b同向

θ=90°a与b垂直,记作a⊥b

θ=180°a与b反向

[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。

[小试身手]

1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)

(1)任意两个向量都可以作为基底。()

(2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底。()

(3)零向量不可以作为基底中的向量。()

答案:(1)×(2)√(3)√

2、若向量a,b的夹角为30°,则向量——a,——b的夹角为()

A、60°B、30°

C、120°D、150°

答案:B

3、设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是()

A、e1,e2B、e1+e2,3e1+3e2

C、e1,5e2D、e1,e1+e2

答案:B

4、在等腰Rt△ABC中,∠A=90°,则向量,的夹角为XXXXXX。

答案:135°

用基底表示向量

[典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,。

[解]法一:由题意知,==12=12a,==12=12b。

所以=+=——=12a——12b,

=+=12a+12b,

法二:设=x,=y,则==y,

又+=,——=,则x+y=a,y——x=b,

所以x=12a——12b,y=12a+12b,

即=12a——12b,=12a+12b。

用基底表示向量的方法

将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的性求解。

[活学活用]

如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b。试以a,b为基底表示。

解:∵AD∥BC,且AD=13BC,

∴=13=13b。

∵E为AD的中点,

∴==12=16b。

∵=12,∴=12b,

∴=++

=——16b——a+12b=13b——a,

=+=——16b+13b——a=16b——a,

=+=——(+)

=——(+)=——16b——a+12b

=a——23b。

高二数学教案第4篇

高中数学命题教案

命题及其关系

1.1.1命题及其关系

一、课前小练:阅读下列语句,你能判断它们的真假吗?

(1)矩形的对角线相等;

(2)3;

(3)3吗?

(4)8是24的约数;

(5)两条直线相交,有且只有一个交点;

(6)他是个高个子。

二、新课内容:

1、命题的概念:

①命题:可以判断真假的陈述句叫做命题(proposition)。

上述6个语句中,哪些是命题。

②真命题:判断为真的语句叫做真命题(true proposition);

假命题:判断为假的语句叫做假命题(false proposition)。

上述5个命题中,哪些为真命题?哪些为假命题?

③例1:判断下列语句中哪些是命题?是真命题还是假命题?

(1)空集是任何集合的子集;

(2)若整数是素数,则是奇数;

(3)2小于或等于2;

(4)对数函数是增函数吗?

(5);

(6)平面内不相交的两条直线一定平行;

(7)明天下雨。

(学生自练个别回答教师点评)

④探究:学生自我举出一些命题,并判断它们的真假。

2、将一个命题改写成“若,则”的形式:

三、练习:教材P4 1、2、3

四、作业:

1、教材P8第1题

2、作业本1-10

五、课后反思

高二数学教案第5篇

三维目标

(1)知识与技能:

掌握归纳推理的技巧,并能运用解决实际问题。

(2)过程与方法:

通过“自主、合作与探究”实现“一切以学生为中心”的理念。

(3)情感、态度与价值观:

感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。

教学重点

归纳推理及方法的总结。

教学难点

归纳推理的含义及其具体应用。

教具准备

与教材内容相关的资料。

课时安排

1课时

教学过程

一。问题情境

(1)原理初探

①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”

②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?

③探究:他是怎么发现“杠杆原理”的?

从而引入两则小典故:

A:一个小孩,为何轻轻松松就能提起一大桶水?

B:修筑河堤时,奴隶们是怎样搬运巨石的?