高二数学优秀教案第1篇
一、课前预习目标
理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。
二、预习内容
1、双曲线的几何性质及初步运用。
类比椭圆的几何性质。
2。双曲线的渐近线方程的导出和论证。
观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
课内探究
1、椭圆与双曲线的几何性质异同点分析
2、描述双曲线的渐进线的作用及特征
3、描述双曲线的离心率的作用及特征
4、例、练习尝试训练:
例1。求双曲线9y2——16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
解:
解:
5、双曲线的第二定义
1)。定义(由学生归纳给出)
2)。说明
(七)小结(由学生课后完成)
将双曲线的几何性质按两种标准方程形式列表小结。
作业:
1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。
(1)16x2——9y2=144;
(2)16x2——9y2=——144。
2。求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;
(2)焦距是10,虚轴长是8,焦点在y轴上;
曲线的方程。
点到两准线及右焦点的距离。
高二数学优秀教案第2篇
[核心必知]
1、预习教材,问题导入
根据以下提纲,预习教材P2~P5,回答下列问题。
(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在数学中算法通常指什么?
提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
2、归纳总结,核心必记
(1)算法的概念
12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表
数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤
现代算法通常可以编成计算机程序,让计算机执行并解决问题
(2)设计算法的目的
计算机解决任何问题都要依赖于算法。只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题。
[问题思考]
(1)求解某一个问题的算法是否是的?
提示:不是。
(2)任何问题都可以设计算法解决吗?
提示:不一定。
高二数学优秀教案第3篇
课题1.1.1命题及其关系(一)课型新授课
目标
1)知识方法目标
了解命题的概念,
2)能力目标
会判断一个命题的真假,并会将一个命题改写成“若,则”的形式。
重点
难点
1)重点:命题的改写
2)难点:命题概念的理解,命题的条件与结论区分
教法与学法
教法:
教学过程备注
1、课题引入
(创设情景)
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3;
(3)3吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子。
2、问题探究
1)难点突破
2)探究方式
3)探究步骤
4)高潮设计
1、命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition)。
上述6个语句中,(1)(2)(4)(5)(6)是命题。
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition)。
上述5个命题中,(2)是假命题,其它4个都是真命题。
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数是素数,则是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5);
(6)平面内不相交的两条直线一定平行;
(7)明天下雨。
(学生自练个别回答教师点评)
④探究:学生自我举出一些命题,并判断它们的真假。
2、将一个命题改写成“若,则”的形式:
①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论。
②试将例1中的命题(6)改写成“若,则”的形式。
③例2:将下列命题改写成“若,则”的形式。
(1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等。
(学生自练个别回答教师点评)
3、小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式。
引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。
通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若,则”的形式,为后续的学习打好基础。
3、练习提高1.练习:教材P4 1、2、3
师生互动
4、作业设计
作业:
1、教材P8第1题
2、作业本1-10
5、课后反思
高二数学优秀教案第4篇
教学目标
1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;
2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重点与难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教学过程
一、复习回顾
引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?
二、新课教学
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)若直线a∥b,则直线a与直线b没有公共点.
(2)2+4=7.
(3)垂直于同一条直线的两个平面平行.
(4)若x2=1,则x=1.
(5)两个全等三角形的面积相等.
(6)3能被2整除.
讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
抽象、归纳:
1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
例1:判断下列语句是否为命题?
(1)空集是任何集合的子集.
(2)若整数a是素数,则是a奇数.
(3)指数函数是增函数吗?
(4)若平面上两条直线不相交,则这两条直线平行.
(5)=-2.
(6)x>15.
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
解略。
引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?
通过对此问的思考,学生将清晰地认识到定理、推论都是命题.
过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?
2、命题的构成――条件和结论
定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.
例2:指出下列命题中的条件p和结论q,并判断各命题的真假.
(1)若整数a能被2整除,则a是偶数.
(2)若四边行是菱形,则它的对角线互相垂直平分.
(3)若a>0,b>0,则a+b>0.
(4)若a>0,b>0,则a+b<0.
(5)垂直于同一条直线的两个平面平行.
此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。
此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.
解略。
过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
3、命题的分类
真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.
假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.
强调:
(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.
(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
判断一个数学命题的真假方法:
(1)数学中判定一个命题是真命题,要经过证明.
(2)要判断一个命题是假命题,只需举一个反例即可.
例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:
(1)面积相等的两个三角形全等。
(2)负数的立方是负数。
(3)对顶角相等。
分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。
三、巩固练习:
P4第2,3。
四、作业:
P8:习题1.1A组~第1题
五、教学反思
师生共同回忆本节的学习内容.
1、什么叫命题?真命题?假命题?
2、命题是由哪两部分构成的?
3、怎样将命题写成“若P,则q”的形式.
4、如何判断真假命题.
高二数学优秀教案第5篇
一、学习者特征分析
本节课内容是面向高二下学期的学生,主要是进行思维的训练。学生在高一的时候已经学过这些数学思维方法,但是对这些知识还没有进行概念化的归纳和专门的训练。学生不知道分析法和综合法的时候还是会用一点,以以往的经验,学生一旦学习概念后,反而觉得难度大,概念混淆,因此,这一教学内容的设计是针对学生的这一情况,设计专题学习网站,通过学生之间经过学习,交流,课后反复思考的,进一步深化概念的过程,培养学生的数学思维能力。
二、教学目标
知识与技能
1、体会数学思维中的分析法和综合法;
2、会用分析法和综合法去解决问题。
过程与方法
1、通过对分析法综合法的学习,培养学生的数学思维能力;
2、培养学生的数学阅读和理解能力;
3、培养学生的评价和反思能力。
情感态度与价值观
1.交流、分享运用数学思维解决问题的喜悦;
2.提高学生学习数学的兴趣;
3.增强学习数学的信心。
三、教学内容
本节课是数学思维训练专题课,专门训练学生利用分析法和综合法解题。分析法在数学中特指从结果(结论)出发追溯其产生原因的思维方法,即执果索因法。综合思维方法:综合是以已知性质和分析为基础的,从已知出发逐步推求位未知的思考方法,即执果导因法。这两种数学思维方法是数学思维方法中最基础也是最重要的方法,是学生的思维训练的重要内容。
四、教学策略的设计
1、情境的设计
情境描述
情境简要描述
呈现方式
趣味问题
从前有个国王在处死那些犯了罪的臣子的时候,总是出一些这样那样的智力题给犯人做,用这种方法给那些更聪明的人一条生路,有一位正直的青年叫亚瑟,不幸得罪了国王,国王判他死罪,他所面临的问题是:“这里有三个盒子,金盒,银盒和铅盒,免死金牌放在其中一个盒子内,每只盒子各写一句话,但其中只有一句是真的,你要是猜中了免死金牌在哪个盒子里,就免你一死罪。”聪明的亚瑟经过推理而获知免死金牌所放的盒子,从而救了自己的命,请问亚瑟是如何推理的?
网页
2、教学资源的设计
资源类型
资源内容简要描述
资源来源
相关故事
通过有趣的推理故事,如“推理救命的故事”,“宝藏的故事,用于激发学生的学习兴趣。
网上下载
学习网站
专题学习网站,嵌入了经过修改适用于本课的论坛,在线测试等。
自行制作
3、教学工具:计算机
4、教学策略:自主探究学习策略,任务驱动策略、反思策略
5、教学环境:网络教室
五、教学流程设计
1、创设情景,吸引学生注意
教师活动
学生活动
资源/工具
设计思想
提出“推理救命问题”
积极思考,寻找方法
学习网站
以具有趣味性的故事入手,吸引学生的注意,点明本节课的目的。
2、自主探究,获取知识
教师活动
学生活动
资源/工具
设计思想
1、初试牛刀:让学生试做思维训练题。
2、挑战高考题:在高考题中充分体现分析法,综合法。
3、举一反三:让学生学会总结
学以致用:
4、把本节的方法应用到解决数学问题中。
积极思考,互相交流,发现问题,解决问题。
学习网站
1、让学生在轻松活泼的氛围下带着问题,自主、积极地学习,有助于培养学生的自我探索的能力。
2、超级链接控制性好,交互性强,可让学生在较短的时间内收集积累更多的信息,拓宽学生的知识面。
3、培养学生收集信息、处理信息的能力。
3、总结概念,深化概念
教师活动
学生活动
资源/工具
设计思想
归纳本节的方法:分析法和综合法。并指出:数学思维的训练不单只是一节简单的专题课,我们的同学在平常多留心身边事物,多思考问题,不断提高数学思维能力。
体会分析法和综合法的概念,并在论坛上发表自己对概念的理解。
学习网站论坛
通过对具体问题的概念化,加深对概念的理解。
4、自主交流,知识迁移
教师活动
学生活动
资源/工具
设计思想
提出宝藏问题并指导学生利用BBs论坛进行讨论
学生在论坛里充分地发表自己的看法
学习网站论坛
通过自主交流,增强分析问题的能力和解决问题的能力
5、在线测试,评价及反馈
教师活动
学生活动
资源/工具
设计思想
利用学习网站制作一些简单的训练题目
独立完成在线的测试
学习网站
及时反馈课堂学习效果。
6、课后任务
教师活动
学生活动
资源/工具
设计思想
布置课后任务:在网络上收集推理分析的相关例子,在学习网站的论坛上讨论。
记录要求,并在课后完成。
网络资源和学习网站
通过课后的任务训练,进一步提高学生的数学思维能力,把思维训练延续到课堂外。
高二数学优秀教案第6篇
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、
四、教学目标
1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3、借助多媒体辅助教学,激发学习数学的兴趣、
五、教学重点与难点:
教学重点
1、对圆锥曲线定义的理解
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程
教学难点:
巧用圆锥曲线xx解题
六、教学过程设计
【设计思路】
开门见山,提出问题
例题:
(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)线段(d)不存在
(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
高二数学优秀教案第7篇
(1)平面向量基本定理的内容是什么?
(2)如何定义平面向量基底?
(3)两向量夹角的定义是什么?如何定义向量的垂直?
[新知初探]
1、平面向量基本定理
条件e1,e2是同一平面内的两个不共线向量
结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2
基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底
[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是的;③基底不,只要是同一平面内的两个不共线向量都可作为基底。
2、向量的夹角
条件两个非零向量a和b
产生过程
作向量=a,=b,则∠AOB叫做向量a与b的夹角
范围0°≤θ≤180°
特殊情况θ=0°a与b同向
θ=90°a与b垂直,记作a⊥b
θ=180°a与b反向
[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。
[小试身手]
1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)
(1)任意两个向量都可以作为基底。()
(2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底。()
(3)零向量不可以作为基底中的向量。()
答案:(1)×(2)√(3)√
2、若向量a,b的夹角为30°,则向量——a,——b的夹角为()
A、60°B、30°
C、120°D、150°
答案:B
3、设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是()
A、e1,e2B、e1+e2,3e1+3e2
C、e1,5e2D、e1,e1+e2
答案:B
4、在等腰Rt△ABC中,∠A=90°,则向量,的夹角为XXXXXX。
答案:135°
用基底表示向量
[典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,。
[解]法一:由题意知,==12=12a,==12=12b。
所以=+=——=12a——12b,
=+=12a+12b,
法二:设=x,=y,则==y,
又+=,——=,则x+y=a,y——x=b,
所以x=12a——12b,y=12a+12b,
即=12a——12b,=12a+12b。
用基底表示向量的方法
将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的性求解。
[活学活用]
如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b。试以a,b为基底表示。
解:∵AD∥BC,且AD=13BC,
∴=13=13b。
∵E为AD的中点,
∴==12=16b。
∵=12,∴=12b,
∴=++
=——16b——a+12b=13b——a,
=+=——16b+13b——a=16b——a,
=+=——(+)
=——(+)=——16b——a+12b
=a——23b。